

Field Trial Report

Effect of EnergHi, Gibboost and Liquid N on pasture growth

Nigel Johnston, Pasture First Research Ltd.

December 2018

Trial Outline

One small plot replicated field trial was conducted in Canterbury between August and November 2018 to determine the activity of EnergHi when used in combination with Gibberellic Acid and Liquid N (dissolved urea) on pasture growth.

The trial was established as a randomised complete block design with six replicates. Plot sizes were 10m x 1.5m. The trial area was pre-mown before each application to ensure a uniform starting point and was left for 5-7 days to regrow and 'freshen up'. All treatments were applied as a liquid using a knapsack CO₂ sprayer incorporating three Hardi MD02 air induction flat fan nozzles at an application pressure of 280 kPa on a boom with 50cm spacing's.

Yields were assessed by mowing a single strip up the length of each plot using a commercial rotary lawn mower. The mowing strip was approximately 51cm wide. Subsamples were taken from each mown strip and sent to Hill Labs in Christchurch to ascertain dry matter levels.

9.00am (10cm) soil temperatures (taken form the closest research station – Lincoln) during the trial period ranged from 3.1°C (8th August) to 15.4°C (25th October).

Table 1: Trial details

Farmer

i aiiiici.	
Location:	Edwards Road, Rolleston, Canterbury

Crop: Irrigated Perennial Ryegrass & White Clover pasture
Application dates: 3rd August, 6th September, and 15th October 2018
Measurement dates: 31st August, 5th October, and 5th November 2018

Table 2: Treatment details and application rates

Product	Urea rate	Gibb Acid rate	EnergHi rate
1. Control	-	-	-
2. Gibboost	-	9g/ha	-
3. EnergHi	-	-	25ml/ha
4. Gibboost + EnergHi	-	9g/ha	25ml/ha
5. Gibboost + Nitrogen	45kg/ha	9g/ha	-
6. EnergHi + Nitrogen	45kg/ha	-	25ml/ha
7. Nitrogen	45kg/ha	-	-
8. Gibboost + EnergHi + N	45kg/ha	9g/ha	25ml/ha

Dry matter production results

When applied alone, Gibberellic Acid (Gibboost) and Nitrogen (Liquid N), significantly increased pasture production at all three harvests (table 3.) and for total yield (table 4.). When combined (Gibboost + N) the level of pasture production significantly increased further.

EnergHi applied on its own, had no effect on pasture production. When combined with Nitrogen, a significant lift in pasture production was seen. However, this lift in production was no greater than Liquid N applied on its own, indicating that it was a Liquid N effect causing the increased pasture growth.

When EnergHi and Gibberellic Acid were combined, significant production benefits were seen at the final harvest and for total yield. Again, this increase in pasture production was no greater than Gibberellic Acid on its own, indicating that any positive yield effect was caused by the Gibberellic Acid.

A highly significant increase in pasture production was seen when Gibberellic Acid, EnergHi and Liquid N were applied together. This combination significantly increased pasture production at all three harvest dates and for total yield. The lift in pasture production was significantly greater than the combination of just Gibberellic Acid and Liquid N (except for harvest 1).

Table 3. Effect of treatments on pasture dry matter production.

Treatment	31/08/	31/08/18		05/10/18		05/11/18		
	Yield (kgDM/l	Yield (kgDM/ha) grown		Yield (kgDM/ha) grown		Yield (kgDM/ha) grown		
Control	660	d	1788	е		1722	g	
Gibboost	909	bc	2194	cd		2256	е	
EnergHi	653	d	1669	e		1825	fg	
Gibboost + EnergHi	817	bcd	1960	de		1967	f	
Gibboost + N	1174	a	2758	b		3183	b	
EnergHi + N	724	cd	2489	bc		2860	С	
N	888	bc	2440	bc		2633	d	
Gibboost + EnergHi + N	1004	ab	3214	a		3441	а	
F Test	***		***		***			
CV%	21.0517		12.3281		6.1114			
LSD 5% level	209.6896		332.8675		177.2869			
Trial Mean (kgDM/ha)	853.6250		2313.9375		2486.0833			
Standard Error:	103.7515		164.6982		87.7191			

a,b,c values sharing the same letter within a column did not differ statistically significantly from each other at the 95% confidence level.

SEM standard error of the means for comparisons between permutations of treatments (GLM analysis) SE standard error for each of the individual components (GLMM mixed models analysis)

Table 4. Effect of treatments on pasture dry matter production – mean total growth over trial period.

Treatment	Total			
	Yield (kgDM/ha) grown			
Control	4171 f			
Gibboost	5359 d			
Triacontanol	4147 f			
Gibboost + Triacontanol	4745 e			
Gibboost + N	7115 b			
Triacontanol + N	6073 c			
N	5961 c			
Gibboost + Triacontanol + N	7659 a			
F Test	***			
CV%	7.6933			
LSD 5% level	507.5345			
Trial Mean (kgDM/ha)	5653.6458			
Standard Error:	251.1210			

a,b,c values sharing the same letter within a column did not differ statistically significantly from each other at the 95% confidence level.

SEM standard error of the means for comparisons between permutations of treatments (GLM analysis) SE standard error for each of the individual components (GLMM mixed models analysis)

Conclusion

The addition of EnergHi to Gibberellic Acid and Liquid N provided significant pasture production benefits. The lift in pasture production when EnergHi was added to this combination was highly evident throughout the trial and provided over 500kg/ha extra pasture growth over the trial period.

The addition of Liquid N to Gibberellic acid is a common practice on New Zealand pastoral farms, as it has been proven that the addition of Liquid N further enhances pasture production. This was again shown in this trial.

However, the addition of EnergHi to this mix further enhances pasture production, providing a valuable tool that farmers can use to improve production levels.

Trial site set up – October 2018

